Publications

Recent publications

Vps60 initiates alternative ESCRT-III filaments

Pfitzner, A. K., Zivkovic, H., Bernat-Silvestre, C., West, M., Peltier, T., Humbert, F., Odorizzi, G., & Roux, A. (2023). Vps60 initiates alternative ESCRT-III filaments. The Journal of cell biology, 222(11), e202206028. https://doi.org/10.1083/jcb.202206028

Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.

Integer topological defects organize stresses driving tissue morphogenesis

Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K., Roux, A. Integer topological defects organize stresses driving tissue morphogenesis. Nat. Mater. 21, 588–597 (2022). https://doi.org/10.1038/s41563-022-01194-5 

Tissues acquire function and shape via differentiation and morphogenesis. Both processes are driven by coordinating cellular forces and shapes at the tissue scale, but general principles governing this interplay remain to be discovered. Here we report that self-organization of myoblasts around integer topological defects, namely spirals and asters, suffices to establish complex multicellular architectures. In particular, these arrangements can trigger localized cell differentiation or, alternatively, when differentiation is inhibited, they can drive the growth of swirling protrusions. Both localized differentiation and growth of cellular vortices require specific stress patterns. By analysing the experimental velocity and orientational fields through active gel theory, we show that integer topological defects can generate force gradients that concentrate compressive stresses. We reveal these gradients by assessing spatial changes in nuclear volume and deformations of elastic pillars. We propose integer topological defects as mechanical organizing centres controlling differentiation and morphogenesis.

Epithelial cells adapt to curvature induction via transient active osmotic swelling

Tomba, C.; Luchnikov, V.; Barberi, L.; Blanch-Mercader, C.; Roux, A.

Developmental Cell 2022, 57 (10), 1257-1270.e5. https://doi.org/10.1016/j.devcel.2022.04.017.

Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction.

HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells

Garcia, J.; Lopez Andarias, J.; Maillard, J. S.; Mercier, V.; Roffay, C.; Roux, A.; Fuerstenberg, A.; Sakai, N.; Matile, S.

Chemical Science 2022, 13 (7), 2086-2093. https://doi.org/10.1039/D1SC05208J.

HydroFlippers are introduced as the first fluorescent membrane tension probes that report simultaneously on membrane compression and hydration. The probe design is centered around a sensing cycle that couples the mechanical planarization of twisted push–pull fluorophores with the dynamic covalent hydration of their exocyclic acceptor. In FLIM images of living cells, tension-induced deplanarization is reported as a decrease in fluorescence lifetime of the dehydrated mechanophore. Membrane hydration is reported as the ratio of the photon counts associated to the hydrated and dehydrated mechanophores in reconvoluted lifetime frequency histograms. Trends for tension-induced decompression and hydration of cellular membranes of interest (MOIs) covering plasma membrane, lysosomes, mitochondria, ER, and Golgi are found not to be the same. Tension-induced changes in mechanical compression are rather independent of the nature of the MOI, while the responsiveness to changes in hydration are highly dependent on the intrinsic order of the MOI. These results confirm the mechanical planarization of push–pull probes in the ground state as most robust mechanism to routinely image membrane tension in living cells, while the availability of simultaneous information on membrane hydration will open new perspectives in mechanobiology.

Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement

Di Meglio, I. F.; Trushko, A.; Guillamat, P.; Blanch-Mercader, C.; Abuhattum, S.; Roux, A. 

Cell Reports 2022, 40 (8), 111227. https://doi.org/10.1016/j.celrep.2022.111227.

Morphogenesis requires spatiotemporal regulation of proliferation, both by biochemical and mechanical cues. In epithelia, this regulation is called contact inhibition of proliferation, but disentangling biochemical from mechanical cues remains challenging. Here, we show that epithelia growing under confinement accumulate pressure that inhibits proliferation above a threshold value. During growth, epithelia spontaneously buckle, and cell proliferation is transiently reactivated within the fold. Reactivation of proliferation within folds correlated with the local reactivation of the mechano-sensing YAP/TAZ pathway. At late time points, when the pressure is highest, β-catenin activity increases. The threshold pressure increases when β-catenin is overactivated and decreases when β-catenin is inhibited. Altogether, our results suggest that different mechanical cues resulting from pressure inhibition of proliferation are at play through different mechano-sensing pathways: the β-catenin pathway sustains cell division under high pressure, and the YAP pathway senses local curvature.

all publications

bioRxiv

Topology changes of the regenerating Hydra define actin nematic defects as mechanical organizers of morphogenesis

Yamini Ravichandran, Matthias Vogg, Karsten Kruse, Daniel JG Pearce, Aurélien Roux

bioRxiv 2024.04.07.588499; doi: https://doi.org/10.1101/2024.04.07.588499


Technical insights into fluorescence lifetime microscopy of mechanosensitive Flipper probes

Chloé Roffay, Juan Manuel García-Arcos, Pierrik Chapuis, Javier López-Andarias, Falk Schneider, Adai Colom, Caterina Tomba, Ilaria Di Meglio, Valentin Dunsig, Stefan Matile, Aurélien Roux, Vincent Mercier

bioRxiv 2022.09.28.509885; doi: https://doi.org/10.1101/2022.09.28.509885 


2024

Luciano, M., Tomba, C., Roux, A., & Gabriele, S. (2024). How multiscale curvature couples forces to cellular functions. Nature Reviews Physics, 6(4), 246–268. https://doi.org/10.1038/s42254-024-00700-9


Simonin, J. L., Tomba, C., Mercier, V., Bacchetta, M., Idris, T., Badaoui, M., Roux, A., & Chanson, M. (2024). Apical dehydration impairs the cystic fibrosis airway epithelium barrier via a β1-integrin/YAP1 pathway. Life science alliance, 7(4), e202302449. https://doi.org/10.26508/lsa.202302449


Roux, A., & Reinisch, K. (2024). Recent developments in membrane traffic and lipid dynamics. Current opinion in cell biology, 86, 102320. https://doi.org/10.1016/j.ceb.2023.102320

2023

Wang, X., Espadas, J., Wu, Y., Cai, S., Ge, J., Shao, L., Roux, A., & De Camilli, P. (2023). Membrane remodeling properties of the Parkinson's disease protein LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 120(43), e2309698120. https://doi.org/10.1073/pnas.2309698120

Dedenon, M., Dessalles, C. A., Guillamat, P., Roux, A., Kruse, K., & Blanch-Mercader, C. (2023). Density-polarity coupling in confined active polar films: Asters, spirals, and biphasic orientational phases. Physical Review Letters. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.268301 

Pfitzner, A. K., Zivkovic, H., Bernat-Silvestre, C., West, M., Peltier, T., Humbert, F., Odorizzi, G., & Roux, A. (2023). Vps60 initiates alternative ESCRT-III filaments. The Journal of cell biology, 222(11), e202206028. https://doi.org/10.1083/jcb.202206028

Colin, A., Orhant-Prioux, M., Guérin, C., Savinov, M., Cao, W., Vianay, B., Scarfone, I., Roux, A., De La Cruz, E. M., Mogilner, A., Théry, M., & Blanchoin, L. (2023). Friction patterns guide actin network contraction. Proceedings of the National Academy of Sciences of the United States of America, 120(39), e2300416120. https://doi.org/10.1073/pnas.2300416120

Gopaldass, N.; De Leo, M. G.; Courtellemont, T.; Mercier, V.; Bissig, C.; Roux, A.; Mayer, A. Retromer Oligomerization Drives SNX‐BAR Coat Assembly and Membrane Constriction. EMBO journal 2023, 42 (2). https://doi.org/10.15252/embj.2022112287

Eremchev, M.; Roesel, D.; Poojari, C. S.; Roux, A.; Hub, J. S.; Roke, S. Passive Transport of Ca2+ Ions through Lipid Bilayers Imaged by Widefield Second Harmonic Microscopy. Biophysical journal 2023, 122 (4), 624–631. https://doi.org/10.1016/j.bpj.2023.01.018

2022

Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K., Roux, A. Integer topological defects organize stresses driving tissue morphogenesis. Nat. Mater. 21, 588–597 (2022). https://doi.org/10.1038/s41563-022-01194-5 

Meadowcroft, B., Palaia, I., Pfitzner, A.-K., Roux, A., Baum, B., & Anđela Šarić. (2022). Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. PHYSICAL REVIEW LETTERS, 129(26). https://doi.org/10.1103/physrevlett.129.268101

Jiang, X., Harker-Kirschneck, L., Vanhille-Campos, C., Pfitzner, A.-K., Lominadze, E., Roux, A., … Anđela Šarić. (2022). Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLOS Computational Biology, 18(10), e1010586–e1010586. https://doi.org/10.1371/journal.pcbi.1010586 

Tomba, C.; Luchnikov, V.; Barberi, L.; Blanch-Mercader, C.; Roux, A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Developmental cell 2022, 57 (10), 1257-1270.e5. https://doi.org/10.1016/j.devcel.2022.04.017

Garcia, J.; Lopez Andarias, J.; Maillard, J. S.; Mercier, V.; Roffay, C.; Roux, A.; Fuerstenberg, A.; Sakai, N.; Matile, S. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chemical science 2022, 13 (7), 2086-2093. https://doi.org/10.1039/D1SC05208J

Di Meglio, I. F.; Trushko, A.; Guillamat, P.; Blanch-Mercader, C.; Abuhattum, S.; Roux, A. Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement. Cell reports 2022, 40 (8), 111227. https://doi.org/10.1016/j.celrep.2022.111227

Jukic, N.; Perrino, A. P.; Humbert, F. J. -C.; Roux, A.; Scheuring, S. Snf7 spirals sense and alter membrane curvature. Nature communications 2022, 13 (1). https://doi.org/10.1038/s41467-022-29850-z

Assies, L.; Mercier, V.; Lopez Andarias, J.; Roux, A.; Sakai, N.; Matile, S. The Dynamic Range of Acidity: Tracking Rules for the Unidirectional Penetration of Cellular Compartments. ChemBioChem 2022, 23 (15), e202200192. https://doi.org/10.1002/cbic.202200192

2021

Tomba, C.; Roux, A. Bending toward differentiation. Developmental Cell 2021, 56 (23), 3176-3177.  https://doi.org/10.1016/j.devcel.2021.11.013

Roux, A. Common principles of surface deformation in biology. Faraday discussions 2021. https://doi.org/10.1039/d1fd00040c

Assies, L.; Garcia, J.; Piazzolla, F.; Sanchez, S.; Kato, T.; Reymond, L.; Goujon, A.; Colom Diego, A.; Lopez Andarias, J.; Strakova, K.; et al. Flipper Probes for the Community. Chimia 2021, 75 (12), 1004-1011. https://doi.org/10.2533/chimia.2021.1004

Piazzolla, F.; Mercier, V.; Assies, L.; Sakai, N.; Roux, A.; Matile, S. Fluorescent Membrane Tension Probes for Early Endosomes. Angewandte Chemie: International Edition 2021. https://doi.org/10.1002/anie.202016105

Blanch Mercader, C.; Guillamat, P.; Roux, A.; Kruse, K. Integer topological defects of cell monolayers: Mechanics and flows. Physical Review. E 2021, 103 (012405). https://doi.org/10.1103/PhysRevE.103.012405

Mercier, V.; Larios, J.; Molinard, G.; Goujon, A.; Matile, S.; Roux, A.; Gruenberg, J. La formation des vésicules intraluminales de l'endosome est contrôlée par la tension membranaire. Médecine/Sciences 2021, 37 (8-9), 697-700. https://doi.org/10.1051/medsci/2021096

Gupta, S.; Yano, J.; Mercier, V.; Htwe, H. H.; Shin, H. R.; Rademaker, G.; Cakir, Z.; Ituarte, T.; Wen, K. W.; Kim, G. E.; et al. Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nature cell biology 2021, 23 (3), 232-242. https://doi.org/10.1038/s41556-021-00644-7

Mahecic, D.; Carlini, L.; Kleele, T.; Colom Diego, A.; Goujon, A.; Matile, S.; Roux, A.; Manley, S. Mitochondrial membrane tension governs fission. Cell Reports 2021, 35 (108947). https://doi.org/10.1016/j.celrep.2021.108947

Roffay, C.; Molinard, G.; Kim, K.; Urbanska, M.; Andrade, V.; Barbarasa, V.; Nowak, P.; Mercier, V.; Garcia-Calvo, J.; Matile, S.; et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proceedings of the National Academy of Sciences of the United States of America 2021, 118 (47), e2103228118. https://doi.org/10.1073/pnas.2103228118

Pfitzner, A. -K.; Moser Von Filseck, J.; Roux, A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends in cell biology (Regular ed.) 2021, 31 (10), 856-868. https://doi.org/10.1016/j.tcb.2021.04.005

Blanch Mercader, C.; Guillamat, P.; Roux, A.; Kruse, K. Quantifying Material Properties of Cell Monolayers by Analyzing Integer Topological Defects. Physical Review Letters 2021, 126 (028101). https://doi.org/10.1103/PhysRevLett.126.028101

Sistemich, L.; Dimitrov Stanchev, L.; Kutsch, M.; Roux, A.; Pomorski, G. T.; Herrmann, C. Structural requirements for membrane binding of human guanylate-binding protein 1. The FEBS Journal 2021, 288 (13), 4098-4114. https://doi.org/10.1111/febs.15703

2020

Pfitzner, A. -K.; Mercier, V.; Jiang, X.; Moser Von Filseck, J.; Baum, B.; Šarić, A.; Roux, A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020, 182 (5), 1140-1155. https://doi.org/10.1016/j.cell.2020.07.021

Moser Von Filseck, J.; Barberi, L.; Talledge, N.; Johnson, I. E.; Frost, A.; Lenz, M.; Roux, A. Anisotropic ESCRT-III architecture governs helical membrane tube formation. Nature Communications 2020, 11 (1516). https://doi.org/10.1038/s41467-020-15327-4

Trushko, A.; Di Meglio, I. F.; Merzouki, F. A.; Blanch Mercader, C.; Abuhattum, S.; Guck, J.; Alessandri, K.; Nassoy, P.; Kruse, K.; Chopard, B.; et al. Buckling of an Epithelium Growing under Spherical Confinement. Developmental Cell 2020, 54 (5), 655-668.e6.  https://doi.org/10.1016/j.devcel.2020.07.019

Galli, V.; Sadhu, K. K.; Masi, D.; Saarbach, J.; Roux, A.; Winssinger, N. Caprin‐1 Promotes Cellular Uptake of Nucleic Acids with Backbone and Sequence Discrimination. Helvetica Chimica Acta 2020, 103 (e1900255), 1-10. https://doi.org/10.1002/hlca.201900255

Jimenez Rojo, N.; Leonetti, M. D.; Zoni, V.; Colom Diego, A.; Feng, S.; Iyengar, N. R.; Matile, S.; Roux, A.; Vanni, S.; Weissman, J. S.; et al. Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Current Biology 2020, 30, 3775-3787.e7. https://doi.org/10.1016/j.cub.2020.07.059

Mercier, V.; Larios, J.; Molinard, G.; Goujon, A.; Matile, S.; Gruenberg, J.; Roux, A. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nature Cell Biology 2020, 22 (8), 947-959. https://doi.org/10.1038/s41556-020-0546-4

Garcia, J.; Maillard, J. S.; Fureraj, I.; Strakova, K.; Colom Diego, A.; Mercier, V.; Roux, A.; Vauthey, E.; Sakai, N.; Fuerstenberg, A.; et al. Fluorescent Membrane Tension Probes for Super-Resolution Microscopy: Combining Mechanosensitive Cascade Switching with Dynamic-Covalent Ketone Chemistry. Journal of the American Chemical Society 2020, 142 (28), 12034-12038. https://doi.org/10.1021/jacs.0c04942

Oberhauser, L.; Granziera, S.; Colom Diego, A.; Goujon, A.; Lavallard, V.; Matile, S.; Roux, A.; Brun, T.; Maechler, P. Palmitate and oleate modify membrane fluidity and kinase activities of INS-1E β-cells alongside altered metabolism-secretion coupling. Biochimica et Biophysica Acta - Molecular Cell Research 2020, 1867 (2), 118619. https://doi.org/10.1016/j.bbamcr.2019.118619

2019

Maechler, F.; Allier, C.; Roux, A.; Tomba, C. Curvature-dependent constraints drive remodeling of epithelia. Journal of Cell Science 2019, 132 (4), jcs222372. https://doi.org/10.1242/jcs.222372

Tomba, C.; Petithory, T.; Pedron, R.; Airoudj, A.; Di Meglio, I. F.; Roux, A.; Luchnikov, V. Laser‐Assisted Strain Engineering of Thin Elastomer Films to Form Variable Wavy Substrates for Cell Culture. Small 2019, 15 (21), 1900162. https://doi.org/10.1002/smll.201900162

Goujon, A.; Colom Diego, A.; Strakova, K.; Mercier, V.; Mahecic, D.; Manley, S.; Sakai, N.; Roux, A.; Matile, S. Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. Journal of the American Chemical Society 2019, 141 (8), 3380-3384. https://doi.org/10.1021/jacs.8b13189

Faelber, K.; Dietrich, L.; Noel, J. K.; Wollweber, F.; Pfitzner, A. -K.; Mühleip, A.; Sánchez, R.; Kudryashev, M.; Chiaruttini, N.; Lilie, H.; et al. Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 2019, 571 (7765), 429-433. https://doi.org/10.1038/s41586-019-1372-3

Kadosh, A.; Colom Diego, A.; Yellin, B.; Roux, A.; Shemesh, T. The tilted helix model of dynamin oligomers. Proceedings of the National Academy of Sciences 2019, 116 (26), 12845-12850. https://doi.org/10.1073/pnas.1903769116

Riggi, M.; Bourgoint, C.; Macchione, M.; Matile, S.; Loewith, R. J.; Roux, A. TORC2 controls endocytosis through plasma membrane tension. The Journal of Cell Biology 2019, 218 (7), 2265-2276. https://doi.org/10.1083/jcb.201901096

2018

Colom Diego, A.; Derivery, E.; Soleimanpour, S.; Tomba, C.; Dal Molin, M.; Sakai, N.; Gonzalez Gaitan, M.; Matile, S.; Roux, A. A fluorescent membrane tension probe. Nature Chemistry 2018, 10 (11), 1118-1125. https://doi.org/10.1038/s41557-018-0127-3

Riggi, M.; Niewola-Staszkowska, K.; Chiaruttini, N.; Colom Diego, A.; Kusmider, B.; Mercier, V.; Soleimanpour, S.; Stahl, M.; Matile, S.; Roux, A.; et al. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nature Cell Biology 2018, 20 (9), 1043-1051. https://doi.org/10.1038/s41556-018-0150-z

Tanasescu, R.; Mettal, U.; Colom Diego, A.; Roux, A.; Zumbuehl, A. Facile and Rapid Formation of Giant Vesicles from Glass Beads. Polymers 2018, 10, 54. https://doi.org/10.3390/polym10010054

Melero Carrillo, A.; Chiaruttini, N.; Karashima, T.; Riezman, I.; Funato, K.; Barlowe, C.; Riezman, H.; Roux, A. Lysophospholipids Facilitate COPII Vesicle Formation. Current Biology 2018, 28 (12), 1950-1958.e6. https://doi.org/10.1016/j.cub.2018.04.076

Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology 2018, 19 (5), 313-326. https://doi.org/10.1038/nrm.2017.132

Kruse, K.; Chiaruttini, N.; Roux, A. Optical control of cytoplasmic flows. Nature Cell Biology 2018, 20 (3), 227-228. https://doi.org/10.1038/s41556-018-0050-2

2017

Chiaruttini, N.; Roux, A. Dynamic and elastic shape transitions in curved ESCRT-III filaments. Current Opinion in Cell Biology 2017, 47, 126-135. https://doi.org/10.1016/j.ceb.2017.07.002

Colom Diego, A.; Redondo-Morata, L.; Chiaruttini, N.; Roux, A.; Scheuring, S. Dynamic remodeling of the dynamin helix during membrane constriction. Proceedings of the National Academy of Sciences 2017, 114 (21), 5449-5454. https://doi.org/10.1073/pnas.1619578114

Mierzwa, B. E.; Chiaruttini, N.; Redondo-Morata, L.; Moser Von Filseck, J.; König, J.; Larios, J.; Poser, I.; Müller-Reichert, T.; Scheuring, S.; Roux, A.; et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology 2017, 19 (7), 787-798. https://doi.org/10.1038/ncb3559

Merzouki, F. A.; Malaspinas, O. P.; Trushko, A.; Roux, A.; Chopard, B. Influence of cell mechanics and proliferation on the buckling of simulated tissues using a vertex model. Natural Computing 2017, 1-9. https://doi.org/10.1007/s11047-017-9629-y

Gopaldass, N. A.; Fauvet, B.; Lashuel, H.; Roux, A.; Mayer, A. Membrane scission driven by the PROPPIN Atg18. EMBO Journal 2017, 36 (22), 3274-3291. https://doi.org/10.15252/embj.201796859

Daumke, O.; Roux, A. Mitochondrial Homeostasis: How Do Dimers of Mitofusins Mediate Mitochondrial Fusion? Current Biology 2017, 27 (9), R353-R356. https://doi.org/10.1016/j.cub.2017.03.024

Shydlovskyi, S.; Zienert, A. Y.; Ince, S.; Dovengerds, C.; Hohendahl, A.; Dargazanli, J. M.; Blum, A.; Günther, S. D.; Kladt, N.; Stürzl, M.; et al. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Proceedings of the National Academy of Sciences 2017, 114 (28), E5559-E5568. https://doi.org/10.1073/pnas.1620959114

Jukic, N.; Redondo-Morata, L.; Roux, A.; Scheuring, S. Recovery of ESCRT-III Filaments Subjected to Force: An ‘Invasive Mode' HS-AFM Study. Biophysical Journal 2017, 112 (3), 92a. https://doi.org/10.1016/j.bpj.2016.11.540

Hohendahl, A.; Talledge, N.; Galli, V.; Shen, P. S.; Humbert, F. J. -C.; De Camilli, P.; Frost, A.; Roux, A. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 2017, 6 (26856), 1-19. https://doi.org/10.7554/eLife.26856

Roux, A.; Loewith, R. J. Tensing Up for Lipid Droplet Formation. Developmental Cell 2017, 41 (6), 571-572. https://doi.org/10.1016/j.devcel.2017.06.001

Zala, D.; Schlattner, U.; Desvignes, T.; Bobe, J.; Roux, A.; Chavrier, P.; Boissan, M. The advantage of channeling nucleotides for very processive functions. F1000Research 2017, 6, 724. https://doi.org/10.12688/f1000research.11561.2

Verolet, Q.; Dal Molin, M.; Colom Diego, A.; Roux, A.; Guenee, L.; Sakai, N.; Matile, S. Twisted Push-Pull Probes with Turn-On Sulfide Donors. Helvetica chimica acta 2017, 100 (2), e1600328. https://doi.org/10.1002/hlca.201600328

Galli, V.; Sebastian, R.; Moutel, S.; Ecard, J.; Perez, F.; Roux, A. Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab. eLife 2017, 6 (e25197). https://doi.org/10.7554/eLife.25197

2016

Alessandri, K.; Feyeux, M.; Gurchenkov, B.; Delgado, C.; Trushko, A.; Krause, K. -H.; Vignjević, D.; Nassoy, P.; Roux, A. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab on a chip 2016, 16 (9), 1593-1604. https://doi.org/10.1039/c6lc00133e

Soleimanpour, S.; Colom Diego, A.; Derivery, E.; Gonzalez Gaitan, M.; Roux, A.; Sakai, N.; Matile, S. Headgroup engineering in mechanosensitive membrane probes. Chemical communications 2016, 52 (100), 14450-14453. https://doi.org/10.1039/C6CC08771J

Antonny, B.; Burd, C.; De Camilli, P.; Chen, E.; Daumke, O.; Faelber, K.; Ford, M.; Frolov, V. A.; Frost, A.; Hinshaw, J. E.; et al. Membrane fission by dynamin: what we know and what we need to know. EMBO Journal 2016, 35 (21), 2270-2284. https://doi.org/10.15252/embj.201694613

Hohendahl, A.; Roux, A.; Galli, V. Structural insights into the centronuclear myopathy-associated functions of BIN1 and dynamin 2. Journal of Structural Biology 2016, 196 (1), 37-47. https://doi.org/10.1016/j.jsb.2016.06.015

2015

Saleem, M.; Morlot, S.; Hohendahl, A.; Manzi, J.; Lenz, M.; Roux, A. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nature Communications 2015, 6 (6249), 1041-1045. https://doi.org/10.1038/ncomms7249

Chuard, N.; Gasparini, G.; Roux, A.; Sakai, N.; Matile, S. Cell-penetrating poly(disulfide)s: the dependence of activity, depolymerization kinetics and intracellular localization on their length. Organic & biomolecular chemistry 2015, 13 (1), 64-67. https://doi.org/10.1039/C4OB02060J

Dal Molin, M.; Verolet, Q.; Colom Diego, A.; Letrun, R.; Derivery, E.; Gonzalez Gaitan, M.; Vauthey, E.; Roux, A.; Sakai, N.; Matile, S. Fluorescent Flippers for Mechanosensitive Membrane Probes. Journal of the American Chemical Society 2015, 137 (2), 568-571. https://doi.org/10.1021/ja5107018

Chiaruttini, N.; Redondo-Morata, L.; Colom Diego, A.; Humbert, F. J. -C.; Lenz, M.; Scheuring, S.; Roux, A. Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation. Cell 2015, 163 (4), 866-879. https://doi.org/10.1016/j.cell.2015.10.017

Gonzalez Gaitan, M.; Roux, A. When cell biology meets theory. Journal of Cell Biology 2015, 210 (7), 1041-1045. https://doi.org/10.1083/jcb.201504025

2014

Daumke, O.; Roux, A.; Haucke, V. BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission. Cell 2014, 156 (5), 882-892. https://doi.org/10.1016/j.cell.2014.02.017

Picas, L.; Viaud, J.; Schauer, K.; Vanni, S.; Hnia, K.; Fraisier, V.; Roux, A.; Bassereau, P.; Gaits-Iacovoni, F.; Payrastre, B.; et al. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nature Communications 2014, 5 (5647). https://doi.org/10.1038/ncomms6647

Gasparini, G.; Bang, E. K.; Molinard, G.; Tulumello, D. V.; Ward, S. M.; Kelley, S. O.; Roux, A.; Sakai, N.; Matile, S. Cellular Uptake of Substrate-Initiated Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society 2014, 136 (16), 6069-6074. https://doi.org/10.1021/ja501581b

Boissan, M.; Montagnac, G.; Shen, Q.; Griparic, L.; Guitton, J.; Romao, M.; Sauvonnet, N.; Lagache, T.; Lascu, I.; Raposo, G.; et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 2014, 344 (6191), 1510-1515. https://doi.org/10.1126/science.1253768

Roux, A. Reaching a consensus on the mechanism of dynamin? F1000Prime Reports 2014, 6. https://doi.org/10.12703/P6-86

2013

Koutsopoulos, O. S.; Kretz, C.; Weller, C. M.; Roux, A.; Mojzisova, H.; Böhm, J.; Koch, C.; Toussaint, A.; Heckel, E.; Stemkens, D.; et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. European Journal of Human Genetics 2013, 21 (6), 637-642. https://doi.org/10.1038/ejhg.2012.226

Morlot, S.; Roux, A. Mechanics of dynamin-mediated membrane fission. Annual review of biophysics 2013, 42, 629-649. https://doi.org/10.1146/annurev-biophys-050511-102247

Bang, E. K.; Gasparini, G.; Molinard, G.; Roux, A.; Sakai, N.; Matile, S. Substrate-Initiated Synthesis of Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society 2013, 135 (6), 2088-2091. https://doi.org/10.1021/ja311961k

Roux, A. The physics of membrane tubes: soft templates for studying cellular membranes. Soft Matter 2013, 9 (29), 6726. https://doi.org/10.1039/c3sm50514f

2012

Alonso, D.; Fin, A.; Umebayashi, M.; Riezman, H.; Roux, A.; Sakai, N.; Matile, S. Amphiphilic dynamic NDI and PDI probes: imaging microdomains in giant unilamellar vesicles. Organic & biomolecular chemistry 2012, 10 (30), 6087-6093. https://doi.org/10.1039/c2ob25119a

Morlot, S.; Galli, V.; Klein, M.; Chiaruttini, N.; Manzi, J.; Humbert, F. J. -C.; Dinis, L.; Lenz, M.; Cappello, G.; Roux, A. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 2012, 151 (3), 619-629. https://doi.org/10.1016/j.cell.2012.09.017

Sorre, B.; Callan Jones, A.; Manzi, J.; Goud, B.; Prost, J. M. L.; Bassereau, P.; Roux, A. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proceedings of the National Academy of Sciences 2012, 109 (1), 173-178. https://doi.org/10.1073/pnas.1103594108

Berchtold, D.; Piccolis, M.; Chiaruttini, N.; Riezman, I.; Riezman, H.; Roux, A.; Walther, T. C.; Loewith, R. J. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nature cell biology 2012, 14 (5), 542-7. https://doi.org/10.1038/ncb2480

2011

Umebayashi, M.; Pineau, L.; Hannich, J. T.; Zumbuehl, A.; Alonso, D.; Matile, S.; Heinis, C.; Turcatti, G.; Loewith, R. J.; Roux, A.; et al. Chemical Biology Approaches to Membrane Homeostasis and Function. Chimia 2011, 65 (11), 849-852. https://doi.org/10.2533/chimia.2011.849

Shlomovitz, R.; Gov, N. S.; Roux, A. Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes. New Journal of Physics 2011, 13 (6), 065008. https://doi.org/10.1088/1367-2630/13/6/065008

Chang-Ileto, B.; Frere, S. G.; Chan, R. B.; Voronov, S. V.; Roux, A.; Di Paolo, G. Synaptojanin 1-Mediated PI(4,5)P2 Hydrolysis Is Modulated by Membrane Curvature and Facilitates Membrane Fission. Developmental Cell 2011, 20 (2), 206-218. https://doi.org/10.1016/j.devcel.2010.12.008

2010

Roux, A.; Plastino, J. Actin takes its hat off to dynamin. EMBO Journal 2010, 29 (21), 3591-3592. https://doi.org/10.1038/emboj.2010.263

Morlot, S.; Lenz, M.; Prost, J.; Joanny, J. -F.; Roux, A. Deformation of Dynamin Helices Damped by Membrane Friction. Biophysical Journal 2010, 99 (11), 3580-3588. https://doi.org/10.1016/j.bpj.2010.10.015

Roux, A.; Koster, G.; Lenz, M.; Sorre, B.; Manneville, J. -B.; Nassoy, P.; Bassereau, P. Membrane curvature controls dynamin polymerization. Proceedings of the National Academy of Sciences 2010, 107 (9), 4141-4146. https://doi.org/10.1073/pnas.0913734107